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subject of many GS articles. In this review, we dis-
cuss the factors that affect GS accuracy (statistical 
models, linkage disequilibrium, information concern-
ing markers, relatedness between training and target 
populations, the size of the training population, and 
trait heritability) and the genetic gain expected in 
these species. The impact of GS will be particularly 
strong in tropical perennial crops and plantation trees 
as they have long breeding cycles and constrained 
selection intensity. Future GS prospects are also dis-
cussed. High-throughput phenotyping will allow con-
structing of large training populations and implement-
ing of phenomic selection. Optimized modeling is 
needed for longitudinal traits and multi-environment 
trials. The use of multi-omics, haploblocks, and struc-
tural variants will enable going beyond single-locus 
genotype data. Innovative statistical approaches, 
like artificial neural networks, are expected to effi-
ciently handle the increasing amounts of heteroge-
neous multi-scale data. Targeted recombinations on 
sites identified from profiles of marker effects have 
the potential to further increase genetic gain. GS can 
also aid re-domestication and introgression breeding. 
Finally, GS consortia will play an important role in 
making the best of these opportunities.

Keywords Genomic predictions · Machine 
learning · Pangenomes · Genotype-by-environment 
interaction · Crop growth models · Reaction norms

Abstract To overcome the multiple challenges cur-
rently faced by agriculture, such as climate change 
and soil deterioration, more efficient plant breeding 
strategies are required. Genomic selection (GS) is 
crucial for the genetic improvement of quantitative 
traits, as it can increase selection intensity, shorten 
the generation interval, and improve selection accu-
racy for traits that are difficult to phenotype. Tropi-
cal perennial crops and plantation trees are of major 
economic importance and have consequently been the 
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Abbreviations 
BLUP  Best linear unbiased prediction
CGM  Crop growth model
CNV  Copy number variation
GBLUP  Genomic BLUP
GEBV  Genomic estimated breeding value
GEGV  Genomic estimated genetic value
GEI  Genotype-by-environment interactions
GS  Genomic selection
GWAS  Genome-wide association study
HTP  High-throughput phenotyping
LD  Linkage disequilibrium
MAS  Marker-assisted selection
NIRS  Near-infrared spectroscopy
NGS  Next-generation sequencing
QTL  Quantitative trait locus
RKHS  Reproducing kernel Hilbert spaces
rrBLUP  Random regression BLUP
SNP  Single nucleotide polymorphism
SV  Structural variants

Introduction

The steady growth of the world population, expected 
to reach 9–11 billion by 2050, along with climate 
change and soil deterioration, are major challenges to 
achieving world food security (Kopittke et  al.  2019; 
Röös et al. 2017). Biotic and abiotic stresses caused 
by pathogens, animals, weeds, drought, extreme 
temperatures, flooding, salinity, acidic conditions, 
and nutrient starvation all reduce global agricultural 
productivity (Tyczewska et  al.  2018). Plant breed-
ing represents one of the main ways to alleviate these 
problems and improve both crop production and 
productivity (Bhat et  al.  2016). Plant breeding uses 
two main approaches, conventional and molecular 
breeding. Conventional breeding mainly uses pheno-
typic data (Borrelli et al. 2015) and has several limi-
tations, including the long time (> 10  years) needed 
to release a new variety, confounding environmen-
tal effects leading to low heritability for many traits 
of interest, particularly the most complex ones, like 
yield. Molecular plant breeding using DNA markers 
includes quantitative trait loci (QTL)-based marker-
assisted selection (MAS) that can greatly increase 
the speed, efficiency, and precision of breeding com-
pared to conventional methods (Gupta et  al.  2010). 
However, QTL-based MAS is efficient only for traits 

controlled by a few QTLs that have a major effect on 
trait expression, whereas for complex quantitative 
traits governed by a large number of minor QTLs, 
such as yield, it may be less efficient than conven-
tional phenotypic selection (Bhat et  al.  2016). For 
complex traits, the most efficient molecular breed-
ing strategy available today is genomic selection 
(GS) (Hickey et  al.  2019). GS is a form of MAS in 
which genetic markers covering the whole genome 
are used so that all QTL are in linkage disequilib-
rium (LD) with at least one marker (Goddard and 
Hayes 2007; Heffner et al. 2009; Isik 2014; Meuwis-
sen et al. 2001). GS has emerged as one of the most 
promising selection strategies to enhance genetic gain 
per unit time and/or unit cost for both plant and ani-
mal breeding programs (Fugeray-Scarbel et al. 2021; 
Merrick et  al.  2022; Mrode et  al.  2019; Voss-Fels 
et al. 2019; Wartha and Lorenz 2021; Xu et al. 2020). 
In dairy cattle, GS doubled the rate of genetic pro-
gress (Wiggans et al. 2017). In plants, GS is progres-
sively integrated into breeding schemes and is now 
routinely used for major crops, in particular in the pri-
vate sector (Merrick et al. 2022; Varshney et al. 2017; 
Voss-Fels et al. 2019). For instance, GS played a key 
role in the development of drought-tolerant maize 
hybrids that gave higher yields under both favorable 
and water stress conditions in the western US Corn 
Belt (Merrick et al. 2022; Voss-Fels et al. 2019). GS 
has also been applied on a large scale at the Interna-
tional Maize and Wheat Improvement Center since 
2010, where it is used in spring wheat to discard low-
performing lines (Merrick et al. 2022).

The first step in GS is creating a training set (or 
training population). The training set is genotyped 
and phenotyped for the targeted traits, and a predic-
tion model is then built using these genotypic and 
phenotypic data. Several high-throughput next-
generation sequencing (NGS) technologies such as 
SNP arrays (LaFramboise  2009; Wang et  al.  1998), 
genotyping-by-sequencing (Elshire et  al.  2011), and 
whole-genome sequencing (Ni et al. 2017) platforms 
have facilitated the production of large amounts of 
single nucleotide polymorphism (SNPs) markers to 
use in GS, at an affordable cost. The target population 
is also genotyped but not phenotyped, and the predic-
tion model calculates the genomic estimated breed-
ing values (GEBVs) or, when non-additive effects 
are taken into account, the total genomic estimated 
genotypic values (GEGV) of the selection candidates 
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(Grattapaglia et  al.  2018). The efficiency of GS is 
determined, in particular, by its accuracy, which is 
defined as the correlation between the predicted and 
the true (unknown) genetic value of the selection can-
didates (Lorenz et al. 2011). GS accuracy is affected 
by the effective size of the population, marker density 
and type, the size and structure of the training popu-
lation, the genetic architecture of the traits, related-
ness between the training and target population, LD 
between markers and QTLs, trait heritability, impu-
tation method, etc. (Grattapaglia and Resende 2011; 
Isik 2014; Robertsen et al. 2019).

Tropical perennial crops and plantation trees are 
of huge importance for the human population, in 
particular for use as food, timber, pulp, and stimu-
lant crops (Jamnadass et  al.  2016). However, their 
productivity is generally well below their potential, 
in particular, due to biotic and abiotic constraints, as 
shown, for example, in Eucalyptus (Elli et al. 2019), 
oil palm (Pirker et al. 2016; Woittiez et al. 2017), cof-
fee (Wang et al. 2015), and cocoa (Aneani and Ofori-
Frimpong  2013). Applying more efficient breeding 
approaches to these species will help fill production 
gaps. Genomic selection is particularly attractive for 
perennial plant species as they have long genera-
tion intervals and low selection intensity. Isik (2014) 
showed that the impact of GS could be much greater 
in perennial forest trees than in any other crop or live-
stock breeding program. A significant number of arti-
cles on GS have already been published on a variety 
of traits of interest in several tropical perennial crops 
and plantation trees, for instance, yield in oil palm 
(Cros et al. 2017, 2015), rubber tree (Cros et al. 2019) 
and guava (Silva et  al.  2021), growth in eucalyp-
tus (Bouvet et  al.  2016; Denis et  al.  2012; Resende 
et al. 2012) and rubber tree (Souza et al. 2019), fruit 
quality in citrus (Minamikawa et al. 2017), resistance 
to diseases in cocoa (McElroy et  al.  2018; Romero 
Navarro et al. 2017), etc. (Supplementary Table S1). 
However, a review of GS in these species is lack-
ing. The objective of the present article is therefore 
to review the results of GS research in tropical per-
ennial crops and plantation trees, to discuss the main 
factors affecting GS accuracy and to highlight the 
genetic gains expected in these species using this 
approach. We focus on perennial crops defined as 
such according to the FAO indicative crop classifica-
tion (FAO 2015) and on plantation trees both grown 
in the tropics. The production of the corresponding 

species include fruit, timber, pulp, latex, oil, nuts, and 
stimulants. To our knowledge, the species covered by 
published articles on GS so far are banana, guava, cit-
rus, Eucalyptus species (E. urophylla, E. grandis, E. 
benthamii, E. pellita, and E. robusta), rubber tree, oil 
palm, jatropha, cacao, and coffee.

Factors affecting the accuracy of genomic selection

The correlation between the GEBVs and true breed-
ing values is known as GS accuracy ( rGS) , and it is 
a key parameter for breeders due to the linear corre-
lation between selection accuracy and annual genetic 
gain Ry (Eq. (1)) (Grattapaglia et al. 2018):

where i is selection intensity, r is selection accu-
racy, δA is the additive genetic standard deviation, and 
y is the generation interval in years.

GS accuracy is usually obtained by k-fold cross-
validation within a single experimental design (with 
each fold repeatedly used as a validation set and the 
remaining folds as the training set) or between experi-
mental designs (with one site used for training and 
the other for validation), the latter being preferable as 
cross-validations may overestimate accuracy (Lorenz 
et al. 2011).

Below, we present sequentially the major fac-
tors that affect the accuracy of genomic predictions, 
although most factors are interconnected and their 
effects are not independent.

Statistical models for genomic prediction and trait 
genetic architecture

The whole-genome regression models used for 
genomic predictions deal with the “large p, small 
n” problem that, in GS, concerns the number of 
markers that usually (largely) exceeds the num-
ber of data records, in contrast to multiple linear 
regressions that cannot be used without variable 
selection, which conflicts with the original goal 
of GS, i.e., avoiding marker selection and overfit-
ting. Multiple linear regression results in an insuf-
ficient degree of freedom leading to poor prediction 
due to the inability to estimate all marker effects at 

(1)Ry =
i × r × �A

y
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the same time, which is exacerbated by multicol-
linearity. A wide range of statistical methods has 
been developed for GS to alleviate this constraint 
(Campos et  al.  2013; Jannink et  al.  2010; Montes-
inos-López et  al.  2021; Morota and Gianola  2014; 
Tong and Nikoloski 2021; Wang et al. 2018). They 
represent two broad categories: (i) parametric 
approaches, which mainly include methods that rely 
on the best linear unbiased prediction methodology 
(genomic BLUP [GBLUP] and random regression 
BLUP [RRBLUP]) and various Bayesian methods 
(Bayesian LASSO, BayesA, BayesB, etc.), and (ii) 
semi- and non-parametric approaches that fall into 
the machine learning category (reproducing kernel 
Hilbert spaces [RKHS], artificial neural networks, 
etc.). These methods differ in several ways: in terms 
of genetic assumptions and modeling of the genetic 
architecture of the traits (e.g., purely additive mod-
els, models that explicitly model dominance and/or 
epistatic effects, models with marker effects sam-
pled from a common statistical distribution [RRB-
LUP, GBLUP], models with marker effects sam-
pled from specific distributions [Bayesian LASSO, 
BayesB, etc.], models that implicitly model non-
additive effects [e.g., RKHS]), in terms of compu-
tational approach (relationship-based methods and 
marker effect-based methods, single trait and multi-
trait models, etc.), and in terms of the genomic 
information used in the model (type of polymor-
phisms, use of a priori information on markers, a 
combination of omics data, etc.).

The most widely used statistical approach for GS 
is GBLUP (Heslot et  al.  2015; Montesinos-López 
et  al.  2021), which combines linear mixed model 
analysis and genomic relationships. GBLUP derives 
from the first BLUP analyses applied in animal 
breeding to implement selection based on pheno-
types and pedigree and that estimated the breeding 
values of individuals using the pedigree-based rela-
tionship matrix (A) (Henderson 1975), with a model 
of the form:

where Y  is an n × 1 vector of data records, X is 
an n × p incidence matrix relating data records with 
fixed effects, β is a p × 1 vector of fixed effects, and 
Z is an n × q incidence matrix. u is a q × 1 vector 
of random effects (i.e., breeding values), associated 

(2)Y = X� + Zu + e

with A, and e is an n × 1 vector of residual effects. 
This initial approach we term pedigree-based BLUP 
(PBLUP) paved the way for GBLUP, which uses 
the genomic relationships (G) matrix, thus captur-
ing existing relationships among individuals rather 
than expected relationships (Bernardo  1994; Van-
Raden  2007). An alternative approach to GBLUP 
is RRBLUP (Meuwissen et al. 2001), which yields 
GEBVs by estimating marker effects. GBLUP 
and RRBLUP are equivalent when there are many 
QTLs, when there is no major QTL, or when the 
QTLs are evenly distributed along the genome (Ber-
nardo 2020). RRBLUP uses a model of the form:

where Z’ is an n × k incidence matrix giving the 
genotypes at k SNPs and m a k × 1 vector of random 
SNP effects.

The relative performance of the different statisti-
cal methods is expected to vary depending on the 
genetic architecture of the trait considered (Lebedev 
et  al.  2020). Genetic architecture corresponds to 
the genetic characteristics that determine the geno-
type–phenotype relationship, in particular, the num-
ber of genes that control the trait, the number of 
alleles per gene, the distribution of the genes along 
the genome, the distribution of the gene effects, and 
the mode of gene action (additive, dominant, epi-
static) (Momen et al. 2018). Thus, methods in which 
marker effects are sampled in distributions where var-
iance is the same for all markers (e.g., GBLUP, RRB-
LUP, Bayesian random regression) are expected to 
be more suitable for traits following the infinitesimal 
model, while methods with marker-specific variances 
(e.g., Bayesian LASSO, BayesB) are expected to be 
more suitable for traits whose genetic architecture 
includes major QTLs. Consequently, many GS stud-
ies, including those on tropical perennial fruit crops 
and plantation trees, use a range of statistical predic-
tion methods to identify the most appropriate one 
for a specific trait. Overall, few variations have been 
found among statistical approaches, for example, in 
oil palm yield components (Cros et al. 2015; Kwong 
et al. 2017a), in eucalyptus growth (Durán et al. 2017; 
Müller et  al.  2017), and in rubber tree latex yield 
(Cros et  al. 2019). This confirms results obtained in 
empirical evaluations in other species, in which GS 
statistical methods were seen to perform similarly 

(3)Y = X� + Z′m + e
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(Heslot et  al.  2015); however, in some cases, differ-
ences were found: e.g., BayesB performed best for 
several traits including vegetative growth, production, 
and disease resistance in banana (Nyine et al. 2018) 
and vegetative growth and oil yield in oil palm (Ithnin 
et al. 2017). This could mean that, in the populations 
considered, QTLs with large effects were segregated 
for these traits.

Similarly, when non-additive effects play a sig-
nificant role in genetic variation, models that account 
for non-additive effects are expected to increase GS 
accuracy. In a simulation study, Denis and Bou-
vet (2013) showed that modeling dominance for the 
genomic predictions of the genetic value of euca-
lyptus clones improved accuracy when dominance 
effects were preeminent (ratio of dominance to the 
additive variance of 1.0) and heritability was high 
(H2 = 0.60). With empirical data, also in eucalyptus, 
Resende et  al. (2017), Tan et  al. (2018), and Palu-
deto et al. (2021) showed that the use of GS models 
that account for dominance increased the accuracy of 
prediction for growth traits, which had high levels of 
dominance variance, whereas this was not the case 
for wood traits. In citrus, Minamikawa et  al. (2017) 
showed that considering both additive and dominance 
effects improved prediction accuracy for acidity and 
juiciness.

When considering traits correlated with a suffi-
cient magnitude but with contrasting levels of herit-
ability, the use of multi-trait models can increase 
prediction accuracy for low heritability traits (Tong 
and Nikoloski 2021). In tropical perennial crops and 
plantation trees, the results obtained in oil palm (Mar-
chal et al. 2016) and Eucalyptus robusta (Rambolari-
manana et al. 2018) agreed with this principle. Multi-
variate models thus offer the opportunity to improve 
prediction accuracy at no extra cost (apart from 
increased computational resources), and they should 
therefore be systematically evaluated when correla-
tions exist among the traits of interest, or between the 
traits of interest and secondary traits.

Machine learning methods are complex black-
box approaches that are of growing interest for 
genomic predictions as they have several desirable 
features. They avoid the use of assumptions that are 
often violated and cannot be verified (Gianola and 
Van Kaam 2008), and they are particularly suitable 
to account for non-additive effects in particular in 
polyploids (Bayer et al. 2021) and to integrate data 

from different biological sources for multi-omics 
predictions (Montesinos-López et  al.  2021; Tong 
and Nikoloski 2021). RKHS is the most often eval-
uated machine learning approach for GS in tropical 
perennial crops and plantation trees. In bananas, 
RKHS was slightly more accurate than parametric 
approaches for a few traits (Nyine et  al.  2018). In 
a study analyzing eight traits in E. urophylla × E. 
grandis eucalyptus hybrids, RKHS proved to be 
slightly more accurate in predicting low-heritability 
traits but less accurate in predicting pulp yield (Tan 
et  al.  2017) and performed similarly to GBLUP 
for three traits in E. grandis (Rambolarimanana 
et al. 2018). A few other machine learning methods 
have been implemented in tropical perennial crops 
and plantation trees. Maldonado et al. (2020) com-
pared several parametric prediction models, RKHS 
and two artificial neural network approaches, deep 
learning and Bayesian regularized neural networks, 
in E. globulus and maize, and found that predictions 
made with deep learning methods were significantly 
more accurate for all the traits considered. Sousa 
et  al. (2020) compared several machine learning 
approaches and a parametric model to predict resist-
ance to leaf rust in Coffea arabica and obtained the 
best accuracy with artificial neural networks. Sev-
eral authors used random forest in oil palm and cit-
rus and found that, on average over several traits, 
random forest performed no better than paramet-
ric approaches (Kwong et  al.  2017b; Minamikawa 
et al. 2017). In oil palm, the support vector machine 
was found to be slightly better on average than other 
methods (Kwong et  al.  2017b). Despite these une-
ven results in tropical perennial crops and planta-
tion trees, machine learning should be further inves-
tigated, in particular as the training populations 
used so far were possibly not large enough for the 
optimal training of this type of approach (Montes-
inos-López et al. 2021). Particular attention should 
also be paid to artificial neural networks, which 
have produced promising results.

One limit to the differences among statisti-
cal methods and models in perennial fruit and tree 
crops reported so far is that they were not always 
supported by a statistical test indicating whether 
the differences were significant or not. This can be 
done, for example, using the Hotelling-Williams 
t-test (Steiger 1980).
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Linkage disequilibrium and effective size

Linkage disequilibrium (LD) between markers 
and QTL and effective size (Ne) have interrelated 
effects that strongly influence GS accuracy (Hef-
fner et al. 2009; Isik 2014; Lebedev et al. 2020). LD 
is defined as the non-random association of alleles 
at two or more loci in haplotypes (Slatkin  2008; 
Weir 1979). LD between two loci is measured based 
on the frequency of alleles, using indexes like D, D’, 
and  r2 (Collins and (Ed.)  2007). A key assumption 
in GS is that there is LD between QTLs and mark-
ers, such that, with dense genome marker cover-
age, every QTL controlling the phenotype of inter-
est would be in LD with at least one marker. Good 
knowledge of this parameter in the target population 
is therefore of particular interest to define the marker 
density required for GS. It is thus useful to explore 
historical events, such as bottlenecks, genetic drift, 
and natural and artificial selection, that may have 
shaped the LD profile in the target population (Flint-
Garcia et  al.  2003; Gupta et  al.  2005; Mackay and 
Powell 2007; Slatkin 2008). The LD profile is largely 
determined by the past Ne, which can be described 
as the number of randomly mating individuals in a 
population that would give rise to the observed rate 
of inbreeding (Falconer and Mackay 1996). There is 
an inverse relationship between Ne and LD, with high 
rates of genetic drift and inbreeding in low Ne popu-
lations leading to strong LD between markers and 
QTLs compared to high Ne populations (Grattapa-
glia 2014; Lin et al. 2014; Thistlethwaite et al. 2020). 
As Ne decreases and LD increases, pairs of individu-
als within the population tend to share longer haplo-
types, enabling good genomic prediction accuracy 
(Clark et  al.  2012; Heffner et  al.  2009; Isik  2014; 
Lebedev et  al.  2020). For a given marker density, 
training population size, and trait, LD and GS predic-
tion accuracy is higher in populations with low Ne 
than in populations with high Ne (Grattapaglia 2014; 
Lin et al. 2014; Solberg et al. 2008).

The crucial role of LD and Ne in GS accuracy 
has also been underlined in studies on tropical per-
ennial crops and plantation trees. Several stud-
ies investigated the LD profile to evaluate whether 
the marker density was high enough in citrus (Gois 
et al. 2016; Minamikawa et al. 2017), cocoa (McEl-
roy et al. 2018), eucalyptus (Denis and Bouvet 2013; 
Durán et al. 2017; Müller et al. 2017), and oil palm 

(Kwong et  al.  2017a). Many studies in tropical per-
ennial crops and plantation trees also investigated 
the efficiency of GS in populations with high LD/
low Ne. This was possible using populations obtained 
through specific mating designs among a reduced 
number of parents (Denis and Bouvet 2013; Resende 
et al. 2012). In this way, Resende et al. (2012) found 
that in a population of eucalyptus where Ne = 11 
was obtained with an incomplete diallel, GS accu-
racy was higher for the four growth and wood quality 
traits studied than in the population where Ne = 51, 
despite a slightly larger number of training individu-
als in the latter population. In other studies, high LD/
low Ne was obtained in full-sib families GS (Cros 
et  al.  2017; de Souza et  al.  2018; Gois et  al.  2016; 
Kwong et al. 2017b). This strategy is also applied in 
other crops as it maximizes GS accuracy, although 
at the cost of only applying to families comprising 
the training population (Crossa et al. 2017; Lebedev 
et al. 2020; Lin et al. 2014).

The fact that GS accuracy reaches a plateau when 
marker density reaches a certain level (see below) 
suggests that an appropriate strategy to filter the 
markers would increase the cost-efficiency of GS. Fil-
tering SNPs on LD has been investigated in several 
studies, as the SNPs that show very high LD values 
provide redundant information. In oil palm, Kwong 
et al. (2017a) evaluated the impact of marker density 
reduction by LD filtering and noted that, for some 
traits, it was possible to reach the same GS accuracy 
as using all the SNPs.

Marker density and marker type

As marker density strongly affects the extent of LD, 
it also plays a major role in GS accuracy. In GS stud-
ies of both plants and animals, increasing the num-
ber of markers was shown to improve prediction 
accuracy until a plateau was reached (Isik  2014; 
Lin et  al.  2014; Meuwissen et  al.  2001; Robertsen 
et  al.  2019; Solberg et  al.  2008). The same trend 
was observed in tropical perennial crops and planta-
tion trees, where the density of markers required to 
reach maximum prediction accuracy depends in par-
ticular on the type of population, trait, and marker. 
Romero Navarro et  al. (2017) found increasing pre-
diction accuracy for yield and disease traits in cocoa 
with increasing marker density before a plateau was 
reached at around 1000 markers. In the rubber tree, 
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the prediction accuracy for rubber yield plateaued at 
around 300 SRRs (Cros et  al.  2019). In eucalyptus, 
the prediction accuracy among five growth and wood 
property traits reached a plateau between 5000 and 
20,000 SNPs (Tan et al. 2017). Among seven produc-
tion traits in oil palm hybrids, the plateau was reached 
with 500 to 2000 SNPs (Cros et al. 2017).

GS accuracy is also affected by the type of marker. 
Thus, in oil palm, GS accuracy for bunch number 
and average bunch weight plateaued at 160 SSRs in 
heterotic group A and at 90 SSRs in group B (Mar-
chal et  al.  2016) versus 3000 SNPs in group A and 
350 SNPs in group B (Cros et al. 2017). This likely 
resulted from the fact that, as SNPs are biallelic, they 
are less informative than SSRs. However, in prac-
tice, SSRs cannot be used for genomic predictions, as 
GS relies on dense genotyping of large populations 
of selection candidates and therefore requires high 
throughput genotyping approaches at a reasonable 
cost. If marker density is constrained by the genotyp-
ing approach, the GS accuracy may be reduced. Thus, 
Kwong et  al. (2017b) obtained mean GS prediction 
accuracies of 0.21 over palm oil yield components 
using 135 SSRs, versus 0.31 with 200 K SNPs.

Two primary options are available to reach 
the high marker density required for GS: methods 
that reduce genome complexity and SNP arrays 
(Edwards et  al.  2013; Wiggans et  al.  2017). They 
were made possible by the development of NGS 
technologies, which became available between 2004 
and 2006 (Hu et al. 2021). Less expensive and with 
much higher throughput than the Sanger method 
(Sanger and Coulson 1975; Sanger et  al. 1977), 
NGS methods have made it possible to carry out 
high-density and high-throughput genotyping, i.e., 
with good genome coverage in large populations, 
at an affordable cost. SNP arrays have been devel-
oped in several tropical perennial crops and planta-
tion trees, with, for example, a 200  K array in oil 
palm (Kwong et al. 2016), a 60 K array in eucalyp-
tus (Silva-Junior et  al.  2015), and a 15  K array in 
cacao (McElroy et  al.  2018). Most SNP genotyp-
ing methods based on reducing genome complex-
ity consist of restriction enzyme-based approaches 
and sequence capture (Uitdewilligen et  al.  2013; 
Zhou and Holliday  2012). These methods do not 
require specific preliminary investment and can be 
applied directly to any population. Given their rela-
tive simplicity and lower cost compared to SNP 

arrays, they became widely used, in particular for 
introgression breeding, genome-wide association 
mapping (GWAS), and QTL mapping (see, e.g., 
Kitony et al. (2021) and Reyes et al. (2021) in rice, 
Pootakham et al. (2015) in oil palm, or Chia Wong 
et al. (2022) in cacao). However, they are associated 
with a higher rate of missing data and genotyping 
errors than SNP arrays. Despite these differences, 
it seems that the choice between these two types 
of approaches has no impact on GS accuracy: The 
accuracy of genomic prediction of 13 wood quality 
and growth traits in eucalyptus using SNP geno-
types obtained with sequence capture and a 60  K 
SNP array was similar (de Moraes et al. 2018).

Training and validation population relatedness

The accuracy of GS is positively correlated with the 
relatedness between the training and test population 
(Daetwyler et al. 2013; Isidro y Sánchez J, Akdemir 
D 2021; Pszczola et al. 2012; Wientjes et al. 2013). 
This is because when pairs of genotypes are closely 
related, they tend to share long haplotype blocks in 
the same linkage phase. To limit allele duplication 
and redundancy, relationships within the training 
population should be minimized (Isidro y Sánchez 
J, Akdemir D 2021). The accuracy of GS in tropical 
perennial crops and plantation trees was also found 
to be affected by the relatedness between the train-
ing and test population. In two eucalyptus species, 
E. benthamii and E. pellita, Müller et  al. (2017) 
found that prediction accuracy declined strongly 
for three growth traits when individuals were ran-
domly assigned to the training and validation popu-
lations compared to when they were assigned using 
a principal component analysis to minimize related-
ness between training and validation populations. 
Similarly, considering eight wood growth and qual-
ity traits in Eucalyptus urophylla × E. grandis, Tan 
et  al. (2017) obtained the worst prediction accura-
cies when minimizing the relatedness between the 
training and validation populations using k-means 
clustering. In another study, a significant positive 
correlation was found between GS accuracy and the 
relationship between training and validation popula-
tions for various production traits in oil palm (Cros 
et al. 2015).
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Size and design of the training population

The size of the training population is one of the most 
important factors that determine GS accuracy. Sev-
eral GS studies have reported that increasing the size 
of the training population improves GS accuracy 
(Calleja-Rodriguez et  al. 2020; Cericola et  al. 2018; 
Combs and Bernardo  2013; Isidro et  al.  2015; Liu 
et al. 2018; Nielsen et al. 2016; Tan et al. 2017). In 
a family of full-sibs of Hevea brasiliensis, Cros et al. 
(2019) reported an increase in the accuracy of GS for 
rubber yield with an increase in the size of the train-
ing population up to a plateau of 200 individuals. In 
Eucalyptus, Denis and Bouvet (2013) also reported an 
increase in GS accuracy as a result of increasing the 
size of the training population, and Tan et al. (2017) 
reported an increase in GS accuracy that followed a 
diminishing return trend with increasing size of the 
training population.

The possibility of assembling large training popu-
lations among tropical perennial crops and planta-
tion trees is contrasted. Thus, training populations 
comprising more than 1000 individuals were used 
in eucalyptus (Mphahlele et al. 2021), cacao (McEl-
roy et al. 2018), and oil palm (Kwong et al. 2017a), 
whereas only small populations (< 600 individuals) 
have been used so far in banana (Nyine et al. 2018), 
rubber tree (Cros et al. 2019; Munyengwa et al. 2021; 
Souza et  al.  2019), coffee (Fanelli Carvalho 
et  al.  2020; Ferrão et  al.  2019; Sousa et  al.  2020, 
2019, p. 2), jatropha (Peixoto et al. 2017), and guava 
(Silva et  al.  2021). However, the size of the train-
ing population must be considered in relation to the 
relatedness between training and validation popu-
lations. Thus, for GS predictions in a biparental 
cross, it is better to use a relatively small but highly 
related training population of full-sibs or half-sibs 
than a large training population comprising distantly 
related or unrelated individuals (Brandariz and Ber-
nardo 2019a; Brauner et al. 2020).

For some of the species considered here, breeding 
relies on a large number of phenotyped individuals, 
e.g., thousands of individuals for yield components 
and tolerance to ganoderma disease in oil palm (Cros 
et al. 2017; Daval et al. 2021) and thousands of indi-
viduals for tolerance to pests and diseases in Eucalyp-
tus grandis (Mphahlele et al. 2021). In this case, gen-
otyping a sample of the phenotyped population and 
making the genomic predictions using the single-step 

GBLUP approach (Lourenco et  al.  2020), i.e., using 
a training population combining the genomic data of 
the genotyped individuals and the genealogical data 
of the others, is an efficient way to maximize the cost-
efficiency of GS; see Mphahlele et  al. (2021) in E. 
grandis, Cappa et al. (2019) in a complex eucalyptus 
population, and Imai et al. (2019) in citrus.

The cost of phenotyping is a major constraint 
in GS, especially now that sequencing costs have 
dramatically decreased thanks to next-generation 
sequencing (Akdemir and Isidro-Sánchez 2019). This 
financial constraint is particularly applicable to per-
ennial crops, as their phenotypic evaluation requires 
large surface areas over several years. Thus, train-
ing populations need to be optimized to improve the 
cost-effectiveness of GS in these species. Training 
population optimization is the process of selecting, 
within a pool of individuals that could be used to 
train the GS model, a sample of individuals that will 
best predict the genetic value of the selection candi-
dates (Isidro y Sánchez J, Akdemir D 2021). Several 
methods have been developed to optimize the training 
population, including CD-mean, PEV-mean, stratified 
sampling, or EthAcc (Isidro y Sánchez J, Akdemir 
D 2021). This aspect has received little attention in 
tropical perennial crops and plantation trees, although 
in oil palm, Cros et al. 2015 confirmed the efficiency 
of training population optimization to improve GS 
accuracy.

Trait heritability

The broad-sense heritability of a trait (H2) is defined 
as the proportion of the phenotypic variance that is 
genetically controlled. Narrow-sense heritability (h2) 
considers only variations due to additive gene action 
and ignores non-additive (dominance and epistasis) 
genetic effects (Falconer and Mackay  1996). In GS 
studies, the heritability of the trait affects the accu-
racy of GEBV, with higher h2 leading to greater GS 
accuracy (Hayes et al. 2009; Lin et al. 2014; Meuwis-
sen et al. 2001, p. 2). This was illustrated by studies 
in tropical perennial crops and plantation trees where 
positive correlations were found between h2 and GS 
prediction accuracy for a set of disease resistance and 
yield traits in cacao (Romero Navarro et  al.  2017), 
eight palm oil production traits in the B heterotic 
group used in oil palm breeding (Cros et al. 2015), 18 
Arabica coffee agronomic traits (Sousa et al., 2019), 
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and 15 vegetative growth, disease resistance, and 
fruit production traits in banana (Nyine et al. 2018). 
When simulating GS in eucalyptus, Denis and Bou-
vet (2013) noted that the prediction accuracy was 
higher with H2 = 0.6 than with H2 = 0.1, regardless of 
the ratio of dominance to additive variance, modeling 
dominance or not, or the breeding cycle. However, 
some studies detected no effect of trait heritability on 
GS prediction accuracy, but the effect may have been 
masked by other factors with stronger effects on pre-
diction accuracy than heritability, in particular vari-
ations in the size of the training population, among 
traits, like in Durán et al. (2017).

Genetic gain from genomic selection

Genetic gain from the selection is defined as the 
improvement in the average genetic value of a pop-
ulation under the effect of selection over breeding 
cycles (Hazel and Lush  1942). GS has substantially 
increased genetic gain in animal breeding and plays 
a central role in many commercial plant breeding 
programs (Fugeray-Scarbel et  al.  2021; Voss-Fels 
et al. 2019; Wartha and Lorenz 2021; Xu et al. 2020). 
The main advantages of GS over conventional phe-
notypic selection are its ability to (i) increase selec-
tion intensity and/or to shorten the generation interval 
by replacing all or part of the phenotyping activities 
by genotyping in selected breeding cycles and (ii) 
increase accuracy for traits that are difficult to phe-
notype (Fugeray-Scarbel et  al.  2021; Wartha and 
Lorenz 2021).

When GS is used to increase selection inten-
sity or to shorten the breeding cycle, an increase in 
annual genetic gain can be obtained even though GS 
is less accurate than conventional phenotypic evalu-
ation. This has been illustrated in studies of tropical 
perennial crops and plantation trees that are promis-
ing for GS due to their long generation intervals and 
challenging phenotypic evaluations. Thus, based on 
the relative accuracy of GS and phenotypic selec-
tion, Resende et  al. (2012, 2017) demonstrated that 
GS could significantly increase annual genetic gain 
for growth and wood quality traits in eucalyptus, i.e., 
from + 50% to + 300%, thanks to the fact that GS 
can be implemented at the seedling stage (< 1 year), 
i.e., much earlier than phenotypic selection, which 
cannot be carried out before at least three years old. 

Additionally, the possibility of increasing selection 
intensity by using a bigger population of selection 
candidates should further increase the advantage of 
GS over conventional selection. Based on 17 years of 
E. grandis breeding, Mphahlele et al. (2021) reported 
that the accumulated genetic gain with GS would be 
from 1.53 to 3.35 times higher than with conventional 
phenotypic selection, depending on the trait, because 
GS allows three breeding cycles in a 17-year period 
versus two with phenotypic selection. In coffee, it 
was also shown that with GS, 3-year breeding cycles 
would lead to a higher annual genetic gain in traits for 
growth, production, and tolerance to biotic stresses 
than the conventional 6-year phenotypic breeding 
cycles in Coffea arabica (Sousa et  al.  2019) and in 
Coffea canephora (Alkimim et  al.  2020). Similarly, 
an increase in annual genetic gain through a reduction 
in the generation interval with GS has been reported 
in citrus (Gois et al. 2016) and in rubber tree (Souza 
et al. 2019).

However, in many cases, the advantage of using 
GS over phenotypic selection in terms of genetic gain 
did not concern all the traits of interest. In this case, 
the interest of GS is its ability to increase selection 
intensity. This leads to a two-stage breeding scheme, 
starting with genomic selection, followed by pheno-
typic selection. In this case, the limiting factor for GS 
is the number of selection candidates that can be gen-
otyped. In oil palm, using GS for bunch production 
before conventional phenotypic progeny tests was 
estimated to improve the performance of the selected 
A × B hybrids by more than 10% when 4000 A and 
4000 B were genotyped (Cros et al. 2017). Similarly, 
in a full-sib rubber tree family, applying GS to 3000 
individuals before clonal trials would have increased 
the selection response for rubber production by 
around 10% (Cros et al. 2019).

Some studies on tropical perennial crops and plan-
tation trees also compared GS and QTL-based MAS 
approaches and the genetic gain expected from GS. 
For instance, in cacao, McElroy et  al. (2018) found 
that GS largely outperformed GWAS in genetic gain 
for most of the disease resistance traits considered. In 
breeding populations of eucalyptus under selection, 
Müller et  al. (2017) showed that GS outperformed 
GWAS for growth traits, as GS accounted for large 
proportions of the heritability, whereas GWAS cap-
tured very few significant associations. In a study 
simulating several cycles of within-family oil palm 
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breeding, Wong and Bernardo (2008) found that GS 
enabled higher annual genetic gains than marker-
assisted recurrent selection for all the family sizes, 
number of QTLs, and heritability considered.

Future prospects for genomic selection 
in perennial tropical crops and plantation trees

Promising results have already been obtained with GS 
in tropical perennial crops and plantation trees. How-
ever, different aspects require further investigation to 
take full advantage of the approach. As mentioned 
above, statistical approaches for predictions still 
require attention; in particular, single-step GBLUP 
and multivariate models need to be more widely used 
and artificial neural networks need to be investigated 
in greater detail. Training populations also need opti-
mization. Other promising aspects have hardly or not 
been studied at all so far for use with GS in tropical 
perennial crops and plantation trees, and these aspects 
are discussed below.

High-throughput phenotyping

High-throughput phenotyping (HTP) platforms allow 
faster phenotyping and reduced labor costs compared 
to conventional methods (Persa et  al.  2021). HTP 
allows analyses at the field scale with outdoor plat-
forms that use remote sensing and imaging, mostly 
based on visible/near-infrared and far-infrared spec-
troscopy, and analyses of the harvestable part of the 
crop using near-infrared reflectance spectroscopy 
(NIRS). The use of HTP has already led to signifi-
cant results in model species such as rice, maize, and 
wheat, for a wide range of traits, like adaptation, qual-
ity, and vegetative growth (Asaari et al. 2019; Blan-
con et  al.  2019; Chattopadhyay et  al.  2019; Juliana 
et al. 2019; Sun et al. 2019; Wu et al. 2019). For GS, 
HTP is an efficient way to characterize large train-
ing populations (Wartha and Lorenz  2021). This is 
particularly useful for perennial species that require 
phenotyping over extended periods of time. HTP 
has already been used in different tropical perennial 
crops and plantation trees. For instance, multispec-
tral data collected from an unmanned aerial vehicle 
were used to estimate the height and diameter at the 
breast height of eucalyptus trees (Borges et al. 2021). 
NIRS has also been used for rapid quantification of 

flavor-related components of cocoa and beverage 
quality components of Arabica coffee (e.g., Álvarez 
et al. 2012; dos Santos Scholz et al. 2014). In euca-
lyptus populations used for GS, NIRS was used to 
measure chemical and physical wood quality traits 
(de Moraes et al. 2018; Durán et al. 2017; Rambolari-
manana et al. 2018).

In addition to enabling the phenotyping of large 
populations, HTP data can be used in GS models 
as covariates associated with the trait of interest to 
increase prediction accuracy (Persa et  al., 2021). To 
our knowledge, this aspect has not been investigated 
so far in GS studies on tropical perennial crops and 
plantation trees, but such studies would be of interest.

Phenomic selection is another approach that relies 
on spectral data that are usually obtained by NIRS 
(Rincent et  al.  2018). In this case, the prediction of 
the genetic values is based on spectral data instead of 
molecular markers, meaning genomic data could no 
longer be needed. Phenomic selection has been inves-
tigated in a few crops, particularly in two temperate 
perennial species, poplar and grapevine. In poplar, 
the expected genetic gain using phenomic selection 
was higher than or the same as using genomic selec-
tion, depending on the trait (Rincent et al. 2018). In 
grapevine, phenomic predictions were reported to be 
a possible alternative to genomic predictions (Brault 
et al. 2022).

Longitudinal traits

Longitudinal traits are traits recorded repeatedly over 
the period of interest in the lifetime of individuals. 
This is a common case in perennial species. In tropi-
cal perennial crops and plantation trees, longitudi-
nal traits are, for instance, growth and production, 
which are evaluated on each plant at different ages. 
The random regression model, a standard approach 
used for the genetic analysis of such traits (Oliveira 
et al. 2019), is a mixed model that makes it possible 
to model individual genetic values as a continuous 
function of time (or environmental covariates, see 
below), which can lead to more accurate estimates 
of the genetic values and facilitate the selection of 
genotypes with an optimal profile over the period of 
interest. Random regression can link genetic effects 
and time with complex functions, including nonlin-
ear patterns, without making assumptions about the 
shape of the curve (Mrode 2014; Oliveira et al. 2019). 
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The parameters that characterize these functions (e.g., 
slopes and intercepts for linear functions) are treated 
as random effects, and the analysis yields genotype-
specific parameters. Random regression has already 
been used for genomic predictions of longitudinal 
traits in different species, in particular in animals 
(Oliveira et al. 2019). Surprisingly, even though many 
traits in tropical perennial crops and plantation trees 
are longitudinal, random regression has rarely been 
used in these species. One example is Jatropha cur-
cas, where random regression was used to analyze 
grain yield over the years (Peixoto et al. 2020). How-
ever, to our knowledge, this approach has not been 
used in the context of GS in tropical perennial crops 
and plantation trees so far.

Leveraging multi-environment trials

Multi-environment trials and GS models that account 
for environmental effects make it possible to predict 
the genetic value of new genotypes in known environ-
ments, known genotypes in new environments, and 
new genotypes in new environments (Bustos-Korts 
et al. 2016; Malosetti et al. 2016). The ability to pre-
dict the performances in new environments is of major 
interest in the context of climate change, in particular 
for perennial crops where breeding suffers from iner-
tia due to the length of the breeding cycles. Analysis 
of genotype-by-environment interactions (GEI) helps 
select genotypes that are stable across environments 
and can identify the best genotypes for specific tar-
get environments. In particular, this has been exten-
sively studied in cereals (Crossa et  al.  2017). Con-
sidering GEI in GS models can significantly increase 
prediction accuracy when data from multi-environ-
ment trials are available (Tong and Nikoloski  2021; 
Xu et  al.  2020). A variety of approaches have been 
developed to incorporate environmental data in GS 
models (Bustos-Korts et al. 2016; Crossa et al. 2017; 
Malosetti et  al. 2016; Tong and Nikoloski 2021; Xu 
et al. 2020). The most attractive methods enable pre-
dictions in new environments using reaction norms 
(Costa-Neto et  al.  2021; Costa-Neto and Fritsche-
Neto 2021; Crossa et al. 2021) or crop growth models 
(CGM) (Crossa et al. 2021; Van Eeuwijk et al. 2019; 
Xu et al. 2020).

Reaction norms are linear or nonlinear functions 
that describe the phenotypes produced by a sin-
gle genotype across an environmental gradient (Li 

et  al.  2017). They can be incorporated into genetic 
analyses using random regression (Marchal 
et al. 2019; Mrode 2014; Oliveira et al. 2019), leading 
to genotype-specific coefficients that characterize ran-
dom norms for each environmental covariate. Equiv-
alently, the environmental covariates can be used to 
build an environmental relationship matrix that iden-
tifies putative similarities among the environments 
considered (Costa-Neto et al. 2021), rather like using 
SNPs to build the relationship matrix.

CGM relies on plant physiology, soil science, and 
climatology principles to model plant development. 
CGMs use equations involving genetic parameters 
that are specific to the genotypes under consideration 
and are assumed to be independent of the environ-
ment and environmental variables (Boote et al. 2013). 
Several methods have been developed to incorporate 
CGM in the context of GS (Crossa et al. 2021; Rin-
cent et  al.  2017). CGM can be implemented to pre-
dict developmental stages that – along with daily 
weather data – will be used to compute climate stress 
covariates according to the plant development stage. 
CGM can also be used to compute environmental 
stress covariates that include the response of the crop 
to environmental conditions. These environmental 
covariates can then be incorporated in the GS model 
using, for example, random regression. Alternatively, 
the genetic parameters of the CGM can be estimated 
for the genotypes that comprise the training set and 
the genetic parameters of the selection candidates 
predicted by a GS model. Using the CGM and envi-
ronmental covariates makes it possible to predict the 
phenotype of the selection candidates in the target 
environment. This approach has been termed gene-
based modeling. Another method consists of incorpo-
rating a CGM in the GS prediction framework for the 
joint estimation of marker effects and CGM genetic 
parameters. This is referred to as CGM-WGP (whole-
genome predictions) and relies on the use of approxi-
mate Bayesian computation or Bayesian generalized 
linear hierarchical models.

Ideally, the use of reaction norms or CGM requires 
the identification of all the environmental covariates 
that affect the trait of interest and the availability of 
environmental data at the plant level. This refers to 
the concept of envirotyping (Xu 2016) and its exten-
sion to large scale across time and space and enviro-
mics (Resende et  al.  2021). To our knowledge, only 
two GS studies have considered multi-environment 
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trials in tropical perennial crops and plantation trees 
so far. Souza et al. (2019) made genomic predictions 
obtained with multi-environment data and modeling 
approaches including environmental effects and GEI 
applied to rubber trees grown in two environmental 
conditions. These authors showed that multi-envi-
ronment models captured a larger proportion of the 
genetic variance than single-environment approaches. 
In Coffea canephora, Ferrão et al. (2019) used multi-
plicative models in which genetic and environmental 
effects were handled in a common random effect asso-
ciated with a variance–covariance matrix obtained by 
the Kronecker product of genetic and environmental 
variance–covariance matrices. These authors showed 
that this approach resulted in more accurate GS than 
traditional GBLUP, as the latter did not account for 
environmental information. This area of GS needs 
further study in tropical perennial crops and planta-
tion trees, and particular attention should be paid to 
the use of CGM, reactions norms, and enviromics. 
This could leverage tools and skills that are already 

available in these species. Thus, crop growth models 
have already been developed, for example, in cocoa 
(Zuidema et  al.  2005), oil palm (Huth et  al.  2014), 
and eucalyptus (de Freitas et  al.  2020), and reaction 
norms were constructed in arabica coffee (Bertrand 
et al. 2015) and used with random regression for GEI 
analysis in conventional eucalyptus breeding (Alves 
et al. 2020).

Beyond single-locus genotype data

Different types of molecular information can now be 
exploited by the GS model, which could lead to an 
increase in the accuracy of predictions by better mod-
eling the genotype–phenotype relationship (Fig. 1).

The use of haploblocks made of two or more adja-
cent SNPs instead of single SNPs was investigated for 
genomic predictions, as it could increase GS accuracy 
by better capturing identity-by-descent between indi-
viduals, giving higher LD between QTLs and hap-
loblock alleles, or capturing epistatic effects between 

Fig. 1  Overview of possible molecular information for opti-
mizing GS models. Genomic features can be defined in various 
ways: location in QTL, functional and structural annotations, 

etc. (Sørensen et al. 2013). Two genomic features were consid-
ered here for illustration
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SNPs in the same haploblock (Bhat et al. 2021; God-
dard and Hayes 2007; Hess et al. 2017). Ballesta et al. 
(2019) explored the advantages of using haplotypic 
data for GS in Eucalyptus globulus and showed that 
prediction accuracy was significantly higher for low 
heritable traits when haploblocks were used instead 
of single SNPs. However, the relative efficiency of 
using haploblocks or single SNPs for genomic pre-
dictions is affected by many parameters, in particu-
lar the size of the training population, the level of 
LD, the method used to define the haploblocks, and 
the phasing accuracy (Bhat et al. 2021; Goddard and 
Hayes  2007; Hess et  al.  2017). This aspect requires 
further investigation in tropical perennial crops and 
plantation trees.

The use of pangenomes is another possible avenue 
of GS research. Progress in sequencing techniques 
has enabled the comparison of individual genomes 
within species and shown that structural variations 
(SV) represent a significant proportion of polymor-
phism (Yuan et  al.  2021). SVs consist of deletions, 
insertions, copy number variations, inversions, or 
translocations, with size > 50  bp. In particular, SVs 
include variations in gene presence/absence, with 
core genes that are found in all individuals and vari-
able genes that are absent in some individuals. SVs 
cannot be represented by single reference genomes, 
and pangenomes are thus required to harness the 
whole genetic diversity of the breeding population 
(Bayer et  al.  2021; Scossa et  al.  2021). So far, very 
few studies have considered using structural varia-
tions for genomic predictions. In wheat, Würschum 
et  al. (2017) obtained a slight increase in GS accu-
racy when markers specifically targeting a CNV 
contributing to the genetic control of the target trait 
were included in the model. Similarly, in maize and 
cattle, the use of CNV information in the GS model 
increased prediction accuracy in some cases (El 
Hamidi et al. 2018; Lyra et al. 2019). The use of SV 
information for genomic predictions deserves greater 
attention, and this will be greatly facilitated by pange-
nomes. Several reference genomes are already avail-
able for certain tropical perennial crops and plan-
tation trees (e.g., cocoa and oil palm), and the next 
step should be the construction of pangenomes. The 
biggest impact could be on polyploid crops, such as 
bananas, as SV may represent an even higher pro-
portion of polymorphisms in polyploids (Schiessl 
et al. 2019).

Another way of improving GS accuracy is to 
incorporate existing information concerning poly-
morphisms, particularly that obtained from stud-
ies of QTL detection, in the prediction model (Xu 
et  al.  2020). Different modeling approaches have 
been developed for this purpose, and their efficiency 
has been demonstrated in animal and plant stud-
ies, including temperate perennial fruit trees (Nsibi 
et al. 2020). However, very few studies have investi-
gated this aspect in tropical perennial crops and plan-
tation trees so far. In oil palm, Kwong et al. (2017a) 
applied RRBLUP using only SNPs with the highest 
GWAS association score, which made it possible 
to reduce marker density while achieving better or 
the same accuracy as using all the SNPs. A similar 
result was obtained in eucalyptus (Tan and Ingvars-
son  2019). However, these approaches depend on 
a careful definition of the training and application 
populations. Thus, in cocoa, the inclusion of the 
SNPs detected by GWAS as fixed effects in the GS 
model did not improve prediction accuracies, which 
likely resulted from a too high genetic differen-
tiation between the training and application popula-
tions, making the detected SNPs irrelevant (McElroy 
et al. 2018).

Incorporating endophenotypes, or intermediate 
phenotypes, in prediction models is another promis-
ing feature of GS research. Endophenotypes, and in 
particular transcriptomic and metabolomic data, have 
been used jointly with genomic data in a few crops 
(Scossa et  al.  2021; Tong and Nikoloski  2021; Xu 
et al. 2020). These multi-omics prediction approaches 
are expected to better capture minor and non-additive 
effects and to better model the relationship between 
genotypes and phenotypes. Multi-omics prediction 
produced promising results in rice and maize, where 
they outperformed single-omic predictions. This 
requires specific statistical approaches, like machine 
learning (Montesinos-López et  al.  2021; Tong and 
Nikoloski 2021). Investigating these aspects would be 
of interest to tropical perennial crops and plantation 
trees.

GS aided re-domestication and introgression breeding

Some perennial tropical crops have breeding popu-
lations with narrow genetic bases, and hence, only 
a fraction of the genetic diversity of the species is 
exploited, for instance, in Coffea Arabica (Tran 
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et  al.  2016), cacao (Lanaud et  al.  2001; Zhang and 
Motilal 2016), and rubber (Priyadarshan 2011). This 
usually resulted from choices and constraints dating 
back to the beginning of the breeding of these crops, 
or even before. In addition, the criteria originally used 
to select individuals might differ from the criteria that 
are of interest today, and current breeding populations 
may no longer correspond to current needs in terms of 
diversity. For example, in oil palm, the Deli breeding 
population, which today is used as one of the two het-
erotic populations mated to produce the vast majority 
of the oil palm cultivars, originated from four indi-
viduals collected in Africa and planted in Indonesia 
in 1848, decades before the establishment of the first 
commercial plantations (Corley and Tinker  2016). 
The other oil palm breeding populations derived 
from a small number of founders selected among 
individuals collected in restricted regions during 
prospections, usually in the first half of the twen-
tieth century. Although this led to reduced effective 
sizes (Cros et  al.  2014), which is advantageous for 
GS accuracy, it constrains the long-term genetic gain. 
Also, for the La Mé oil palm breeding population, 
the founder individuals were selected in the 1920s, 
giving less importance to the proportion of pulp in 
the fruits than breeders do today (Cochard  2008). 
Although this has not prevented significant genetic 
progress (e.g., in oil palm, genetic progress is consid-
ered to be 1–1.5% per year (Rival and Levang 2014), 
and in rubber tree, yield increased from 500 kg  ha−1 
in primary clones developed in the 1930–1960 
period to 2500 kg  ha−1 in the best clones today (Pri-
yadarshan  2011)), broader genetic diversity of the 
crops concerned would help maintain the rate of the 
genetic progress and likely increase it. This could 
be achieved through the re-domestication of existing 
crops (Tian et  al.  2021), which consists in initiating 
breeding afresh from a renewed and broader diver-
sity comprising ancestors and/or natural populations 
of existing crops. Introgression breeding could also 
play an important role in increasing genetic diversity 
by transferring exotic alleles from the related species 
of cultivated crops (Gramazio et al. 2021). GS is an 
attractive way of implementing these processes effi-
ciently (Crossa et al. 2017). Indeed, re-domestication 
or introgression breeding of perennial tropical crops 
and plantation trees would normally require many 
decades of phenotypic selection, making GS a par-
ticularly attractive option. One example is already 

available in a temperate perennial fruit tree, apple 
(Kumar et al. 2020), a study which suggested that, for 
the introgression of monogenic traits into a superior 
germplasm by backcrosses or pseudo-backcrosses, 
GS would be efficient for the background selection 
implemented among the individuals that inherited the 
trait of interest from the exotic donor germplasm, as 
it would accelerate the elimination of the unwanted 
alleles of the donor, compared to conventional phe-
notypic background selection. The use of GS for this 
purpose should be considered in perennial tropical 
crops and plantation trees where introgression breed-
ing from wild species has already been shown to be of 
interest, including citrus, banana, and cacao (Scossa 
et al. 2016).

Combining profiles of predicted marker effects and 
targeted recombination

As mentioned above, one limiting factor in breeding 
perennial crops is the constrained size of the popula-
tion of selection candidates, as the larger the popu-
lation, the more exhaustive the search for elite indi-
viduals within the diversity generated by meiosis. GS 
makes it possible to increase the population of selec-
tion candidates by replacing phenotyping with geno-
typing. Controlling the gametes generated at meiosis 
could further increase the efficiency of the breeding 
scheme. This could be made possible by combining 
genome-wide profiles of marker effects estimated 
using GS models and targeted recombination (Ber-
nardo 2017). The profiles of marker effects along the 
chromosomes of heterozygote individuals could be 
used to identify sites in the genome where recombi-
nations would maximize the genetic value of their 
gametes by aggregating blocks of favorable alleles. 
Recombinations could be obtained at these sites 
through genome editing, and the progenies of the 
regenerated edited individuals were screened to iden-
tify the best ones. This approach has great potential to 
increase genetic progress (Bernardo 2017; Brandariz 
and Bernardo  2019b). Genome editing tools are 
under active development in perennial tropical crops 
and plantation trees, for example, in cacao (Fister 
et  al.  2018) and oil palm (Yeap et  al.  2021). How-
ever, further studies are required in these species to 
develop efficient, targeted recombination approaches 
and to evaluate the relative efficiency of breeding 
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schemes involving targeted recombinations and con-
ventional schemes.

GS-based breeding consortia

Breeding for perennial crops is highly complex and 
very costly, and only limited resources are available 
for breeding many tropical perennials. Furthermore, 
as we have seen throughout this review, using GS 
requires expertise in a range of scientific and techni-
cal fields, including quantitative genetics, biostatis-
tics, bioinformatics, genomics, computer program-
ming, and, in particular, with the growing interest 
in machine learning, mathematics. GS also often 
requires a large training population which, in the 
context of climate change, will need to be evaluated 
in multiple environments. This puts tropical peren-
nial crops in a completely different situation than 
many other crops including temperate cereals and 
legumes that can rely on a dynamic private sector to 
bring together the required human resources, pheno-
typing and genotyping capacities, etc. and to make 
rapid progress in innovative methods, resulting in 
the release of cultivars that have benefited from these 
methods. One possible solution for tropical perennial 
crops would be to strengthen international collabora-
tion by sharing the efforts required for the practical 
implementation of GS, i.e., multi-environment phe-
notyping, high-throughput genotyping, and statisti-
cal analyses for genomic predictions. Sneller et  al. 
(2021) called for the construction of GS-based breed-
ing consortia, which would allow each member of a 
consortium to share the overall GS costs while pre-
dicting the genetic value of its selection candidates 
using a large training population comprising genetic 
material from all the consortium partners. Another 
advantage of such consortia would be the possibil-
ity to evaluate genetic material in different environ-
ments through the exchange of plant material among 
the consortium partners. Even so, there would have 
to be some relatedness between the plant material 
shared by the members of the consortium, and suffi-
cient genotypes would have to be evaluated in differ-
ent partners’ environments (Sneller et al. 2021). Such 
a consortium is a possible solution for the implemen-
tation of GS for tropical perennial species on which, 
to our knowledge, no GS studies have been published 
so far, including coconut, papaya, avocado, mango, 
or teak, despite their major economic importance. 

Projects in this sense are currently being set up for 
some perennial tropical crops and plantation trees, 
like coffee (World Coffee Research 2022), while oth-
ers could emerge by building on existing networks, 
like MusaNet (https:// musan et. org/) and CacaoNet 
(https:// www. cacao net. org/).

Conclusion

Genomic selection (GS) should revolutionize the 
breeding of perennial tropical crops and plantation 
trees as it has already produced promising results in 
terms of an increase in the rate of genetic progress. 
GS will (i) enable increased selection intensity and/
or a shorter generation interval by replacing all or 
some phenotyping by genotyping in selected breed-
ing cycles and (ii) increase accuracy for traits that are 
difficult to phenotype. Overall, the main factors that 
affect GS accuracy have been well studied in peren-
nial tropical crops and plantation trees. However, 
the level of studies on GS varied in the following 
species: Some, like eucalyptus and oil palm, can be 
considered as models for GS including an in-depth 
assessment of its practical potential; in others, like 
banana and guava, GS studies were recently initiated, 
while in other species, like coconut, papaya, avocado, 
mango, and teak, despite their economic importance, 
no GS study has been conducted so far.

The results obtained in the plant and animal spe-
cies where GS has been investigated to date suggest 
that optimal GS predictions could be achieved through 
joint analysis of all available information concerning 
genotype-to-phenotype relations, possibly including 
multiple omics and phenotypic data on multiple traits 
in several well-characterized environments, using prior 
information available on markers and all types of poly-
morphisms present in the populations concerned. For 
perennial crops, in which phenotyping is particularly 
complex and resource-consuming, there is an urgent 
need for increased international cooperation in the 
form of GS-based consortia to be able to gather such 
large datasets at a reasonable cost. The optimal imple-
mentation of GS will also require going beyond the 
standard GS technologies and methodologies used 
today. In particular, high-throughput phenotyping is a 
key approach to gathering the required amount of phe-
notypic data on such large populations at a reasonable 
rate and cost. Statistical methodologies able to handle 
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large multidimensional heterogeneous datasets are also 
required, and machine learning approaches are crucial, 
particularly artificial neural networks.

Future GS research in tropical perennial crops and 
plantation trees should systematically consider the use 
of single-step GBLUP when phenotypic data are avail-
able on ungenotyped individuals, the use of multivari-
ate models when the traits of interest comprise corre-
lated traits with contrasting levels of heritability, and 
random regression models for longitudinal traits. Train-
ing population optimization should also be undertaken. 
Targeted recombinations on sites identified based on 
the profiles of predicted marker effects should be inves-
tigated. Furthermore, GS has the potential to make re-
domestication possible as well as to boost introgression 
breeding.
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